COPULA FRANK UNTUK PERHITUNGAN VALUE AT RISK PORTOFOLIO BIVARIAT PADA MODEL EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY

نویسندگان

چکیده

Stocks are one type of investment that promises return for investors but often carries a high risk. Value at Risk (VaR) is measuring tool can calculate the amount worst loss occurs in stock portfolio with certain level confidence and within time period. In general, financial data have volatility value, which causes residuals not normally distributed. ARCH/GARCH modoel used to solve heteroscedasticity problem. If also an asymmetric effect, it modelled Exponential GARCH model. Copula-Frank part Archimedian copula empirical cases. The on this study were BBCA KLBF price observation period 30 December 2011 – 6 2019. Furthermore, test validity VaR model, backtesting will be carried out using Kupiec Test. results showed best model stocks was ARIMA (1,0,1) EGARCH (1,1) (1,2). risk 95% combination models 2.233% today's investment. Based Test, obtained declared valid.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wind speed forecasting based on autoregressive moving average- exponential generalized autoregressive conditional heteroscedasticity-generalized error distribution (ARMA-EGARCH-GED) model

With the increase of wind power as a renewable energy source in many countries, wind speed forecasting has become more and more important to the planning of wind speed plants, the scheduling of dispatchable generation and tariffs in the day-ahead electricity market, and the operation of power systems. However, the uncertainty of wind speed makes troubles in them. For this reason, a wind speed f...

متن کامل

risk reduction of portfolio based on generalized autoregressive conditional heteroscedasticity model in tehran stock exchange

return maximization or risk minimization is goal in portfolio optimization based on mean variance theory. the structure of correlation matrices and individual variance of each asset are two main factors in optimization with risk minimization object. it’s necessary to use appropriate variance and correlation coefficient for time series with clustering volatilities feature, too. in this research,...

متن کامل

conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market

ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...

A Method of Short-term Wind Speed Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model

In order to improve the safety of train operation, a short-term wind speed forecasting method is proposed based on a linear recursive autoregressive integrated moving average (ARIMA) algorithm and a non-linear recursive generalized autoregressive conditionally heteroscedastic (GARCH) algorithm (ARIMA-GARCH). Firstly, the non-stationarity embedded in the original wind speed data is pre-processed...

متن کامل

CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles

Value at risk (VaR) is the standard measure of market risk used by financial institutions. Interpreting the VaR as the quantile of future portfolio values conditional on current information, the conditional autoregressive value at risk (CAViaR) model specifies the evolution of the quantile over time using an autoregressive process and estimates the parameters with regression quantiles. Utilizin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Gaussian : Jurnal Statistika Undip

سال: 2021

ISSN: ['2339-2541']

DOI: https://doi.org/10.14710/j.gauss.v10i4.29932